

WAUGH CARTON SPRAY OUT BROWN AEROSOL

Waugh Rubber Bands

Chemwatch Hazard Alert Code: 4

Version No: 2.3.7.9

Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017

Issue Date: 18/11/2025

Print Date: 18/11/2025

L.GHS.NZL.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	WAUGH CARTON SPRAY OUT BROWN AEROSOL
Chemical Name	Not Applicable
Synonyms	CMA1190
Proper shipping name	AEROSOLS
Other means of identification	Not Available

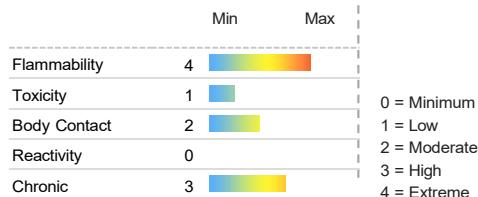
Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	CARTON AND MARKING SPRAY
--------------------------	--------------------------

Details of the supplier of the safety data sheet

Registered company name	Waugh Rubber Bands
Address	40 Main Road Wellington 5028 New Zealand
Telephone	04 232 8036
Fax	Not Available
Website	www.waughbands.co.nz
Email	info@waughbands.co.nz

Emergency telephone number


Association / Organisation	NZ Poison Centre
Emergency telephone numbers	088 764 766
Other emergency telephone numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation.
Classified as Dangerous Goods for transport purposes.

ChemWatch Hazard Ratings

0 = Minimum
1 = Low
2 = Moderate
3 = High
4 = Extreme

Classification [1]	Specific Target Organ Toxicity - Repeated Exposure Category 2, Serious Eye Damage/Eye Irritation Category 2, Reproductive Toxicity Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 3, Aerosols Category 1
Legend:	1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI
Determined by Chemwatch using GHS/HSNO criteria	2.1.2A, 6.4A, 6.8B, 6.9B, 9.1C

Label elements

Hazard pictogram(s)	
Signal word	Danger

WAUGH CARTON SPRAY OUT BROWN AEROSOL

Hazard statement(s)

H373	May cause damage to organs through prolonged or repeated exposure.
H319	Causes serious eye irritation.
H361	Suspected of damaging fertility or the unborn child.
H412	Harmful to aquatic life with long lasting effects.
H222+H229	Extremely flammable aerosol. Pressurized container: may burst if heated.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P211	Do not spray on an open flame or other ignition source.
P251	Do not pierce or burn, even after use.
P260	Do not breathe dust/fume.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P273	Avoid release to the environment.
P264	Wash all exposed external body areas thoroughly after handling.

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/ attention.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P314	Get medical advice/attention if you feel unwell.
P337+P313	If eye irritation persists: Get medical advice/attention.

Precautionary statement(s) Storage

P405	Store locked up.
P410+P412	Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.

Precautionary statement(s) Disposal

P501	Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.
------	--

SECTION 3 Composition / information on ingredients**Substances**

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
78-93-3	8-15	<u>methyl ethyl ketone</u>
110-54-3	3-10	<u>n-hexane</u>
108-88-3	3-10	<u>toluene</u>
106-97-8	15-30	<u>butane</u>
74-98-6	8-15	<u>propane</u>

Legend: 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L; * EU IOELVs available

SECTION 4 First aid measures**Description of first aid measures**

Eye Contact	If aerosols come in contact with the eyes: <ul style="list-style-type: none"> ▶ Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. ▶ Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. ▶ Transport to hospital or doctor without delay. ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. ▶ Generally not applicable.
Skin Contact	If solids or aerosol mists are deposited upon the skin: <ul style="list-style-type: none"> ▶ Flush skin and hair with running water (and soap if available). ▶ Remove any adhering solids with industrial skin cleansing cream. ▶ DO NOT use solvents. ▶ Seek medical attention in the event of irritation. ▶ Generally not applicable.
Inhalation	If aerosols, fumes or combustion products are inhaled: <ul style="list-style-type: none"> ▶ Remove to fresh air. ▶ Lay patient down. Keep warm and rested. ▶ Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.

Continued...

WAUGH CARTON SPRAY OUT BROWN AEROSOL

	<ul style="list-style-type: none"> ► If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. ► Transport to hospital, or doctor. ► Generally not applicable.
Ingestion	<ul style="list-style-type: none"> ► Not considered a normal route of entry. ► Generally not applicable.

Indication of any immediate medical attention and special treatment needed

For petroleum distillates

- In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption - decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- Positive pressure ventilation may be necessary.
- Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment. Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

BP America Product Safety & Toxicology Department

Treat symptomatically.

SECTION 5 Firefighting measures**Extinguishing media****SMALL FIRE:**

- Water spray, dry chemical or CO2

LARGE FIRE:

- Water spray or fog.

Special hazards arising from the substrate or mixture

Fire Incompatibility	<ul style="list-style-type: none"> ► Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
-----------------------------	--

Advice for firefighters

Fire Fighting	<ul style="list-style-type: none"> ► Alert Fire Brigade and tell them location and nature of hazard. ► May be violently or explosively reactive. ► Wear breathing apparatus plus protective gloves. ► Prevent, by any means available, spillage from entering drains or water course. ► If safe, switch off electrical equipment until vapour fire hazard removed. ► Use water delivered as a fine spray to control fire and cool adjacent area. ► DO NOT approach containers suspected to be hot. ► Cool fire exposed containers with water spray from a protected location. ► If safe to do so, remove containers from path of fire. ► Equipment should be thoroughly decontaminated after use. <p>Slight hazard when exposed to heat, flame and oxidisers.</p>
Fire/Explosion Hazard	<ul style="list-style-type: none"> ► Liquid and vapour are highly flammable. ► Severe fire hazard when exposed to heat or flame. ► Vapour forms an explosive mixture with air. ► Severe explosion hazard, in the form of vapour, when exposed to flame or spark. ► Vapour may travel a considerable distance to source of ignition. ► Heating may cause expansion or decomposition with violent container rupture. ► Aerosol cans may explode on exposure to naked flames. ► Rupturing containers may rocket and scatter burning materials. ► Hazards may not be restricted to pressure effects. ► May emit acrid, poisonous or corrosive fumes. ► On combustion, may emit toxic fumes of carbon monoxide (CO). <p>Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material.</p> <p>Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.</p> <p>Articles and manufactured articles may constitute a fire hazard where polymers form their outer layers or where combustible packaging remains in place.</p> <p>Certain substances, found throughout their construction, may degrade or become volatile when heated to high temperatures. This may create a secondary hazard.</p>

SECTION 6 Accidental release measures**Personal precautions, protective equipment and emergency procedures**

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Continued...

WAUGH CARTON SPRAY OUT BROWN AEROSOL

Minor Spills	<ul style="list-style-type: none"> ▶ Clean up all spills immediately. ▶ Avoid breathing vapours and contact with skin and eyes. ▶ Wear protective clothing, impervious gloves and safety glasses. ▶ Shut off all possible sources of ignition and increase ventilation. ▶ Wipe up. ▶ If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. ▶ Undamaged cans should be gathered and stowed safely.
Major Spills	<ul style="list-style-type: none"> ▶ Clear area of all unprotected personnel and move upwind. ▶ Alert Emergency Authority and advise them of the location and nature of hazard. ▶ May be violently or explosively reactive. ▶ Wear full body clothing with breathing apparatus. ▶ Prevent by any means available, spillage from entering drains and water-courses. ▶ Consider evacuation. ▶ Shut off all possible sources of ignition and increase ventilation. ▶ No smoking or naked lights within area. ▶ Use extreme caution to prevent violent reaction. ▶ Stop leak only if safe to do so. ▶ Water spray or fog may be used to disperse vapour. ▶ DO NOT enter confined space where gas may have collected. ▶ Keep area clear until gas has dispersed. ▶ Remove leaking cylinders to a safe place. ▶ Fit vent pipes. Release pressure under safe, controlled conditions ▶ Burn issuing gas at vent pipes. ▶ DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve. ▶ Clear area of personnel and move upwind. ▶ Alert Fire Brigade and tell them location and nature of hazard. ▶ May be violently or explosively reactive. ▶ Wear breathing apparatus plus protective gloves. ▶ Prevent, by any means available, spillage from entering drains or water courses ▶ No smoking, naked lights or ignition sources. ▶ Increase ventilation. ▶ Stop leak if safe to do so. ▶ Water spray or fog may be used to disperse / absorb vapour. ▶ Absorb or cover spill with sand, earth, inert materials or vermiculite. ▶ If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. ▶ Undamaged cans should be gathered and stowed safely. ▶ Collect residues and seal in labelled drums for disposal. ▶ Clean up all spills immediately. ▶ Wear protective clothing, safety glasses, dust mask, gloves. ▶ Secure load if safe to do so. Bundle/collect recoverable product. ▶ Use dry clean up procedures and avoid generating dust. ▶ Vacuum up (consider explosion-proof machines designed to be grounded during storage and use). ▶ Water may be used to prevent dusting. ▶ Collect remaining material in containers with covers for disposal. ▶ Flush spill area with water.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling	<p>Natural gases contain a contaminant, radon-222, a naturally occurring radioactive gas. During subsequent processing, radon tends to concentrate in liquefied petroleum streams and in product streams having similar boiling points. Industry experience indicates that the commercial product may contain small amounts of radon-222 and its radioactive decay products (radon daughters). The actual concentration of radon-222 and radioactive daughters in process equipment (IE lines, filters, pumps and reactor units) may reach significant levels and produce potentially damaging levels of gamma radiation. A potential external radiation hazard exists at or near any pipe, valve or vessel containing a radon enriched stream or containing internal deposits of radioactive material. Field studies, however, have not shown that conditions exist that expose the worker to cumulative exposures in excess of general population limits. Equipment containing gamma-emitting decay products should be presumed to be internally contaminated with alpha-emitting decay products which may be hazardous if inhaled or ingested. During maintenance operations that require the opening of contaminated process equipment, the flow of gas should be stopped and a four hour delay enforced to allow gamma-radiation to drop to background levels. Protective equipment (including high efficiency particulate respirators (P3) suitable for radionucleotides or supplied air) should be worn by personnel entering a vessel or working on contaminated process equipment to prevent skin contamination or inhalation of any residue containing alpha-radiation. Airborne contamination may be minimised by handling scale and/or contaminated materials in a wet state. [TEXACO]</p> <ul style="list-style-type: none"> ▶ Avoid all personal contact, including inhalation. ▶ Wear protective clothing when risk of exposure occurs. ▶ Use in a well-ventilated area. ▶ Prevent concentration in hollows and sumps. ▶ DO NOT enter confined spaces until atmosphere has been checked. ▶ Avoid smoking, naked lights or ignition sources. ▶ Avoid contact with incompatible materials. ▶ When handling, DO NOT eat, drink or smoke. ▶ DO NOT incinerate or puncture aerosol cans. ▶ DO NOT spray directly on humans, exposed food or food utensils. ▶ Avoid physical damage to containers. ▶ Always wash hands with soap and water after handling. ▶ Work clothes should be laundered separately. ▶ Use good occupational work practice. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
---------------	--

WAUGH CARTON SPRAY OUT BROWN AEROSOL

Other information

- Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can
- Store in original containers in approved flammable liquid storage area.
- **DO NOT store in pits, depressions, basements or areas where vapours may be trapped.**
- No smoking, naked lights, heat or ignition sources.
- Keep containers securely sealed. Contents under pressure.
- Store away from incompatible materials.
- Store in a cool, dry, well ventilated area.
- Avoid storage at temperatures higher than 40 deg C.
- Store in an upright position.
- Protect containers against physical damage.
- Check regularly for spills and leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Store away from incompatible materials.

Conditions for safe storage, including any incompatibilities

Suitable container

Generally packaging as originally supplied with the article or manufactured item is sufficient to protect against physical hazards. If repackaging is required ensure the article is intact and does not show signs of wear. As far as is practicable possible, reuse the original packaging or something providing a similar level of protection to both the article and the handler.

- Aerosol dispenser.
- Check that containers are clearly labelled.

Methyl ethyl ketone:

- reacts violently with strong oxidisers, aldehydes, nitric acid, perchloric acid, potassium tert-butoxide, oleum
- is incompatible with inorganic acids, aliphatic amines, ammonia, caustics, isocyanates, pyridines, chlorosulfonic acid
- forms unstable peroxides in storage, or on contact with propanol or hydrogen peroxide
- attacks some plastics
- may generate electrostatic charges, due to low conductivity, on flow or agitation

Toluene:

- reacts violently with strong oxidisers, bromine, bromine trifluoride, chlorine, hydrochloric acid/ sulfuric acid mixture, 1,3-dichloro-5,5-dimethyl-2,4-imidazolidindione, dinitrogen tetraoxide, fluorine, concentrated nitric acid, nitrogen dioxide, silver chloride, sulfur dichloride, uranium fluoride, vinyl acetate
- forms explosive mixtures with strong acids, strong oxidisers, silver perchlorate, tetranitromethane
- is incompatible with bis-toluenediazoo oxide
- attacks some plastics, rubber and coatings
- may generate electrostatic charges, due to low conductivity, on flow or agitation.

For alkyl aromatics:

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

- Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.

► Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.

► Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.

► Alkali metals accelerate the oxidation while CO₂ as co-oxidant enhances the selectivity.

► Microwave conditions give improved yields of the oxidation products.

► Photo-oxidation products may occur following reaction with hydroxyl radicals and NO_x - these may be components of photochemical smogs.

Oxidation of Alkyaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007

► Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.

► Aromatics can react exothermically with bases and with diazo compounds.

Butane/ isobutane

- reacts violently with strong oxidisers
- reacts with acetylene, halogens and nitrous oxides
- is incompatible with chlorine dioxide, conc. nitric acid and some plastics
- may generate electrostatic charges, due to low conductivity, in flow or when agitated - these may ignite the vapour.

Segregate from nickel carbonyl in the presence of oxygen, heat (20-40 C)

Propane:

- reacts violently with strong oxidisers, barium peroxide, chlorine dioxide, dichlorine oxide, fluorine etc.
- liquid attacks some plastics, rubber and coatings
- may accumulate static charges which may ignite its vapours
- Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
New Zealand Workplace Exposure Standards (WES)	methyl ethyl ketone	MEK (Methyl ethyl ketone, 2-Butanone)	150 ppm / 445 mg/m3	890 mg/m3 / 300 ppm	Not Available	bio-Exposure can also be estimated by biological monitoring.
New Zealand Workplace Exposure Standards (WES)	n-hexane	Hexane (n-Hexane)	20 ppm / 72 mg/m3	Not Available	Not Available	bio-Exposure can also be estimated by biological monitoring.
New Zealand Workplace Exposure Standards (WES)	toluene	Toluene (Toluol)	50 ppm / 188 mg/m3	Not Available	Not Available	skin-Skin absorption

Continued...

WAUGH CARTON SPRAY OUT BROWN AEROSOL

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
New Zealand Workplace Exposure Standards (WES)	butane	Butane	800 ppm / 1900 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	propane	Propane	Not Available	Not Available	Not Available	Simple asphyxiant - may present an explosion hazard

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
methyl ethyl ketone	Not Available	Not Available	Not Available
n-hexane	260 ppm	Not Available	Not Available
toluene	Not Available	Not Available	Not Available
butane	Not Available	Not Available	Not Available
propane	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
methyl ethyl ketone	3,000 ppm	Not Available
n-hexane	1,100 ppm	Not Available
toluene	500 ppm	Not Available
butane	Not Available	1,600 ppm
propane	2,100 ppm	Not Available

MATERIAL DATA

IFRA Prohibited Fragrance Substance

The International Fragrance Association (IFRA) Standards form the basis for the globally accepted and recognized risk management system for the safe use of fragrance ingredients and are part of the IFRA Code of Practice. This is the self-regulating system of the industry, based on risk assessments carried out by an independent Expert Panel for: hexane, isomers (excluding n-hexane)

The TLV-TWA is thought to be protective against nausea, headache, upper respiratory tract irritation and CNS depression. The STEL is added to prevent objective depression of the CNS. The lower value ascribed

to n-hexane is due to the neurotoxicity of its metabolites, principally 5-hydroxy-2-hexanone and 2,5-hexanedione. It is considered unlikely that other hexanes follow the same metabolic route. It should be noted however that the n-hexane TLV-TWA also applies to commercial hexane having a concentration of greater than 5% n-hexane.

For butane:

Odour Threshold Value: 2591 ppm (recognition)

Butane in common with other homologues in the straight chain saturated aliphatic hydrocarbon series is not characterised by its toxicity but by its narcosis-inducing effects at high concentrations. The TLV is based on analogy with pentane by comparing their lower explosive limits in air. It is concluded that this limit will protect workers against the significant risk of drowsiness and other narcotic effects.

Odour Safety Factor(OSF)

OSF=0.22 (n-BUTANE)

For methyl ethyl ketone:

Odour Threshold Value: Variously reported as 2 ppm and 4.8 ppm

Odour threshold: 2 ppm (detection); 5 ppm (recognition) 25 ppm (easy recognition); 300 ppm IRRITATING

Exposures at or below the recommended TLV-TWA are thought to prevent injurious systemic effects and to minimise objections to odour and irritation. Where synergism or potentiation may occur stringent control of the primary toxin (e.g. n-hexane or methyl butyl ketone) is desirable and additional consideration should be given to lowering MEK exposures.

Odour Safety Factor(OSF)

OSF=28 (METHYL ETHYL KETONE)

For n-hexane:

Odour Threshold Value: 65 ppm

NOTE: Detector tubes for n-hexane, measuring in excess of 100 ppm, are available commercially.

Occupational polyneuropathy may result from exposures as low as 500 ppm (as hexane), whilst nearly continuous exposures of 250 ppm have caused neurotoxic effects in animals.

Many literature reports have failed to distinguish hexane from n-hexane and on the assumption that the commercial hexane contains 30% n-hexane, a worst case recommendation for TLV is assumed to reduce the risk of peripheral neuropathies (due to the metabolites 2,5-heptanedione and 3,6-octanedione) and other adverse neuropathic effects.

Concurrent exposure to chemicals (including MEK) and drugs which induce hepatic liver oxidative metabolism can reduce the time for neuropathy to appear.

Odour Safety Factor(OSF)

OSF=0.15 (n-HEXANE)

For toluene:

Odour Threshold Value: 0.16-6.7 (detection), 1.9-69 (recognition)

NOTE: Detector tubes measuring in excess of 5 ppm, are available.

High concentrations of toluene in the air produce depression of the central nervous system (CNS) in humans. Intentional toluene exposure (glue-sniffing) at maternally-intoxicating concentration has also produced birth defects. Foetotoxicity appears at levels associated with CNS narcosis and probably occurs only in those with chronic toluene-induced kidney failure. Exposure at or below the recommended TLV-TWA is thought to prevent transient headache and irritation, to provide a measure of safety for possible disturbances to human reproduction, the prevention of reductions in cognitive responses reported amongst humans inhaling greater than 40 ppm, and the significant risks of hepatotoxic, behavioural and nervous system effects (including impaired reaction time and incoordination). Although toluene/ethanol interactions are well recognised, the degree of protection afforded by the TLV-TWA among drinkers is not known.

Odour Safety Factor(OSF)

OSF=17 (TOLUENE)

For propane

Odour Safety Factor(OSF)

OSF=0.16 (PROPANE)

Exposure controls

Appropriate engineering controls	Articles or manufactured items, in their original condition, generally don't require engineering controls during handling or in normal use. Exceptions may arise following extensive use and subsequent wear, during recycling or disposal operations where substances, found in the article, may be released to the environment.
----------------------------------	---

WAUGH CARTON SPRAY OUT BROWN AEROSOL

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection.

Provide adequate ventilation in warehouse or closed storage areas.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Speed:
aerosols, (released at low velocity into zone of active generation)	0.5-1 m/s
direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- ▶ Safety glasses with side shields.
- ▶ Chemical goggles.
- ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

▶ Close fitting gas tight goggles

DO NOT wear contact lenses.

- ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

No special equipment required due to the physical form of the product.

Skin protection

See Hand protection below

Hands/feet protection

▶ No special equipment needed when handling small quantities.

▶ **OTHERWISE:**

- ▶ For potentially moderate exposures:
- ▶ Wear general protective gloves, eg. light weight rubber gloves.
- ▶ For potentially heavy exposures:

▶ Wear chemical protective gloves, eg. PVC. and safety footwear.

No special equipment required due to the physical form of the product.

Body protection

See Other protection below

Other protection

- ▶ The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton.

▶ Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost.

BRETHERICK: Handbook of Reactive Chemical Hazards.

No special equipment needed when handling small quantities.

OTHERWISE:

- ▶ Overalls.
- ▶ Skin cleansing cream.
- ▶ Eyewash unit.

▶ Do not spray on hot surfaces.

No special equipment required due to the physical form of the product.

WAUGH CARTON SPRAY OUT BROWN AEROSOL

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the **computer-generated** selection:

WAUGH CARTON SPRAY OUT BROWN AEROSOL

Material	CPI
PE/EVAL/PE	A
PVA	B
TEFLON	B
BUTYL	C
BUTYL/NEOPRENE	C
CPE	C
HYPALON	C
NATURAL RUBBER	C
NATURAL+NEOPRENE	C
NEOPRENE	C
NEOPRENE/NATURAL	C
NITRILE	C
NITRILE+PVC	C
PVC	C
SARANEX-23	C
SARANEX-23 2-PLY	C
VITON	C
VITON/CHLOROBUTYL	C
VITON/NEOPRENE	C

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Respiratory protection not normally required due to the physical form of the product.

► Generally not applicable.

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	AEROSOL		
Physical state	article	Relative density (Water = 1)	0.809
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	431
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	-81	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	10	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.5	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (%)	Not Applicable

Continued...

WAUGH CARTON SPRAY OUT BROWN AEROSOL

	Not Available	VOC g/L	Not Available
--	---------------	---------	---------------

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	<ul style="list-style-type: none"> ▶ Elevated temperatures. ▶ Presence of open flame. ▶ Product is considered stable. ▶ Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	<p>The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.</p> <p>Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.</p> <p>No health effects were seen in humans exposed at 1,000 ppm isobutane for up to 8 hours or 500 ppm for 8 hours/day for 10 days. Isobutane can have anaesthetic and asphyxiant effects at high concentrations, well above the lower explosion limit of 1.8% (18,000 ppm).</p> <p>Butane is a simple asphyxiant and is mildly anaesthetic at high concentrations (20-25%). 10000 ppm for 10 minutes causes drowsiness.</p> <p>Narcotic effects may be accompanied by exhilaration, dizziness, headache, nausea, confusion, incoordination and unconsciousness in severe cases</p> <p>The paraffin gases C1-4 are practically nontoxic below the lower flammability limit, 18,000 to 50,000 ppm; above this, low to moderate incidental effects such as CNS depression and irritation occur, but are completely reversible upon cessation of the exposure.</p> <p>Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.</p> <p>Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination</p> <p>Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.</p> <p>The acute toxicity of inhaled alkylbenzenes is best described by central nervous system depression. As a rule, these compounds may also act as general anaesthetics.</p> <p>Systemic poisoning produced by general anaesthesia is characterised by lightheadedness, nervousness, apprehension, euphoria, confusion, dizziness, drowsiness, tinnitus, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness and respiratory depression and arrest. Cardiac arrest may result from cardiovascular collapse. Bradycardia, and hypotension may also be produced.</p> <p>Inhaled alkylbenzene vapours cause death in animals at air levels that are relatively similar (typically LC50s are in the range 5000 -8000 ppm for 4 to 8 hour exposures). It is likely that acute inhalation exposure to alkylbenzenes resembles that to general anaesthetics.</p> <p>Alkylbenzenes are not generally toxic other than at high levels of exposure. This may be because their metabolites have a low order of toxicity and are easily excreted. There is little or no evidence to suggest that metabolic pathways can become saturated leading to spillover to alternate pathways. Nor is there evidence that toxic reactive intermediates, which may produce subsequent toxic or mutagenic effects, are formed</p> <p>WARNING: Intentional misuse by concentrating/inhaling contents may be lethal.</p> <p>Acute exposure of humans to high concentrations of methyl ethyl ketone produces irritation to the eyes, nose, and throat. Other effects reported from acute inhalation exposure in humans include central nervous system depression, headache, and nausea.</p> <p>Easy odour recognition and irritant properties of methyl ethyl ketone means that high vapour levels are readily detected and should be avoided by application of control measures; however odour fatigue may occur with loss of warning of exposure.</p> <p>If exposure to highly concentrated atmosphere of gas is prolonged this may lead to narcosis, unconsciousness, even coma and unless resuscitated - death.</p>
Ingestion	<p>Accidental ingestion of the material may be damaging to the health of the individual.</p> <p>At sufficiently high doses the material may be hepatotoxic (i.e. poisonous to the liver). Signs may include nausea, stomach pains, low fever, loss of appetite, dark urine, clay-coloured stools, jaundice (yellowing of the skin or eyes)</p> <p>Not normally a hazard due to physical form of product.</p> <p>Considered an unlikely route of entry in commercial/industrial environments</p> <p>Chronic inhalation or skin exposure to n-hexane may cause peripheral neuropathy, which is damage to nerve ends in extremities, e.g. fingers, with loss of sensation and characteristic thickening. Nerve damage has been documented with chronic exposures of greater than 500 ppm.</p> <p>Improvement in condition does not immediately follow removal from exposure and symptoms may progress for two or three months. Recovery may take a year or more depending on severity of exposure, and may not always be complete. Exposure to n-hexane with methyl ethyl ketone (MEK) will accelerate the appearance of damage, but MEK alone will not cause the nerve damage. Other isomers of hexane do not cause nerve damage. [Source: Shell Co.]</p> <p>Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.</p>
Skin Contact	<p>Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.</p> <p>Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.</p>

WAUGH CARTON SPRAY OUT BROWN AEROSOL

Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Dermatitis has been reported in humans following dermal exposure to methyl ethyl ketone. Tests involving acute exposure of rabbits has shown methyl ethyl ketone to have high acute toxicity from dermal exposure.

Spray mist may produce discomfort

Toxic effects may result from skin absorption

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals.

Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures..

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems.

Harmful: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed.

Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests.

There is sufficient evidence to establish a causal relationship between human exposure to the material and impaired fertility. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesia of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesia), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses.

Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding.

Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties

Animal studies:

No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar

naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human.

Principal route of occupational exposure to the gas is by inhalation.

Limited information is available on the chronic (long-term) effects of methyl ethyl ketone in humans. Chronic inhalation studies in animals have reported slight neurological, liver, kidney, and respiratory effects. No information is available on the developmental, reproductive, or carcinogenic effects of methyl ethyl ketone in humans. Developmental effects, including decreased foetal weight and foetal malformations, have been reported in mice and rats exposed to methyl ethyl ketone via inhalation and ingestion.

Methyl ethyl ketone is considered to have a low order of toxicity; however methyl ethyl ketone is often used in combination with other solvents and the toxic effects of the mix may be greater than either solvent alone. Combinations of n-hexane with methyl ethyl ketone and also methyl n-butyl ketone with methyl ethyl ketone show increase in peripheral neuropathy, a progressive disorder of nerves of extremities.

Combinations with chloroform also show increase in toxicity

Chronic toluene habitation occurs following intentional abuse (glue sniffing) or from occupational exposure. Ataxia, incoordination and tremors of the hands and feet (as a consequence of diffuse cerebral atrophy), headache, abnormal speech, transient memory loss, convulsions, coma, drowsiness, reduced colour perception, frank blindness, nystagmus (rapid, involuntary eye-movements), hearing loss leading to deafness and mild dementia have all been associated with chronic abuse. Peripheral nerve damage, encephalopathy, giant axonopathy electrolyte disturbances in the cerebrospinal fluid and abnormal computer tomographic (CT scans) are common amongst toluene addicts. Although toluene abuse has been linked with kidney disease, this does not commonly appear in cases of occupational toluene exposures. Cardiac and haematological toxicity are however associated with chronic toluene exposures. Cardiac arrhythmia, multifocal and premature ventricular contractions and supraventricular tachycardia are present in 20% of patients who abused toluene-containing paints. Previous suggestions that chronic toluene inhalation produced human peripheral neuropathy have been discounted. However central nervous system (CNS) depression is well documented where blood toluene exceeds 2.2 mg%. Toluene abusers can achieve transient circulating concentrations of 6.5 %. Amongst workers exposed for a median time of 29 years, to toluene, no subacute effects on neurasthenic complaints and psychometric test results could be established.

The prenatal toxicity of very high toluene concentrations has been documented for several animal species and man. Malformations indicative of specific teratogenicity have not generally been found. Neonatal toxicity, described in the literature, takes the form of embryo death or delayed foetal growth and delayed skeletal system development. Permanent damage of children has been seen only when mothers have suffered from chronic intoxication as a result of "sniffing".

WAUGH CARTON SPRAY OUT BROWN AEROSOL

On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Chronic inhalation or skin exposure to n-hexane may cause peripheral neuropathy, which is damage to nerve ends in extremities, e.g. fingers, with loss of sensation and characteristic thickening. Nerve damage has been documented with chronic exposures of greater than 500 ppm. Improvement in condition does not immediately follow removal from exposure and symptoms may progress for two or three months. Recovery may take a year or more depending on severity of exposure, and may not always be complete. Exposure to n-hexane with methyl ethyl ketone (MEK) will accelerate the appearance of damage, but MEK alone will not cause the nerve damage. Other isomers of hexane do not cause nerve damage. [Source: Shell Co.]

WAUGH CARTON SPRAY OUT BROWN AEROSOL	TOXICITY Not Available	IRRITATION Not Available
methyl ethyl ketone	TOXICITY Dermal (rabbit) LD50: ~6400-8000 mg/kg ^[2]	IRRITATION Eye (human): 350 ppm -irritant
	Inhalation(Mouse) LC50; 32 mg/L4h ^[2]	Eye (rabbit): 80 mg - irritant
	Oral(Rat) LD50; 2054 mg/kg ^[1]	Skin (rabbit): 402 mg/24 hr - mild Skin (rabbit):13.78mg/24 hr open
n-hexane	TOXICITY Dermal (rabbit) LD50: >2000 mg/kg ^[1]	IRRITATION Eye(rabbit): 10 mg - mild
	Inhalation(Rat) LC50; 48000 ppm4h ^[2]	
	Oral(Mouse) LD50; 5000 mg/kg ^[2]	
toluene	TOXICITY Dermal (rabbit) LD50: >5000 mg/kg ^[1]	IRRITATION Eye (rabbit): 2mg/24h - SEVERE
	Inhalation(Rat) LC50; 12.5-28.8 mg/L4h ^[2]	Eye (rabbit):0.87 mg - mild
	Oral(Rat) LD50; 636 mg/kg ^[2]	Eye (rabbit):100 mg/30sec - mild
		Eye: adverse effect observed (irritating) ^[1]
		Skin (rabbit):20 mg/24h-moderate
		Skin (rabbit):500 mg - moderate
butane	TOXICITY Inhalation(Rat) LC50; 658 mg/L4h ^[2]	IRRITATION Not Available
	TOXICITY Inhalation(Rat) LC50; >13023 ppm4h ^[1]	IRRITATION Not Available
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances	

WAUGH CARTON SPRAY OUT BROWN AEROSOL	Data demonstrate that during inhalation exposure, aromatic hydrocarbons undergo substantial partitioning into adipose tissues. Following cessation of exposure, the level of aromatic hydrocarbons in body fats rapidly declines. Thus, the aromatic hydrocarbons are unlikely to bioaccumulate in the body. Selective partitioning of the aromatic hydrocarbons into the non-adipose tissues is unlikely. No data is available regarding distribution following dermal absorption. However, distribution following this route of exposure is likely to resemble the pattern occurring with inhalation exposure. Aromatics hydrocarbons may undergo several different Phase I dealkylation, hydroxylation and oxidation reactions which may or may not be followed by Phase II conjugation to glycine, sulfation or glucuronidation. However, the major predominant biotransformation pathway is typical of that of the alkylbenzenes and consists of: (1) oxidation of one of the alkyl groups to an alcohol moiety; (2) oxidation of the hydroxyl group to a carboxylic acid; (3) the carboxylic acid is then conjugated with glycine to form a hippuric acid. The minor metabolites can be expected to consist of a complex mixture of isomeric triphenols, the sulfate and glucuronide conjugates of dimethylbenzyl alcohols, dimethylbenzoic acids and dimethylhippuric acids. Consistent with the low propensity for bioaccumulation of aromatic hydrocarbons, these substances are likely to be significant inducers of their own metabolism. The predominant route of excretion of aromatic hydrocarbons following inhalation exposure involves either exhalation of the unmetabolized parent compound, or urinary excretion of its metabolites. When oral administration occurs, there is little exhalation of unmetabolized these hydrocarbons, presumably due to the first pass effect in the liver. Under these circumstances, urinary excretion of metabolites is the dominant route of excretion.
METHYL ETHYL KETONE	Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

WAUGH CARTON SPRAY OUT BROWN AEROSOL

N-HEXANE	<p>The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.</p> <p>For toluene:</p> <p>Acute Toxicity</p> <p>Humans exposed to intermediate to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis, and death. Similar effects are observed in short-term animal studies.</p> <p>Humans - Toluene ingestion or inhalation can result in severe central nervous system depression, and in large doses, can act as a narcotic. The ingestion of about 60 mL resulted in fatal nervous system depression within 30 minutes in one reported case.</p> <p>Constriction and necrosis of myocardial fibers, markedly swollen liver, congestion and haemorrhage of the lungs and acute tubular necrosis were found on autopsy.</p> <p>Central nervous system effects (headaches, dizziness, intoxication) and eye irritation occurred following inhalation exposure to 100 ppm toluene 6 hours/day for 4 days.</p> <p>Exposure to 600 ppm for 8 hours resulted in the same and more serious symptoms including euphoria, dilated pupils, convulsions, and nausea.</p> <p>Exposure to 10,000-30,000 ppm has been reported to cause narcosis and death</p> <p>Toluene can also strip the skin of lipids causing dermatitis</p> <p>Animals - The initial effects are instability and incoordination, lachrymation and sniffles (respiratory exposure), followed by narcosis. Animals die of respiratory failure from severe nervous system depression. Cloudy swelling of the kidneys was reported in rats following inhalation exposure to 1600 ppm, 18-20 hours/day for 3 days</p> <p>Subchronic/Chronic Effects:</p> <p>Repeat doses of toluene cause adverse central nervous system effects and can damage the upper respiratory system, the liver, and the kidney. Adverse effects occur as a result from both oral and the inhalation exposures. A reported lowest-observed-effect level in humans for adverse neurobehavioral effects is 88 ppm.</p> <p>Humans - Chronic occupational exposure and incidences of toluene abuse have resulted in hepatomegaly and liver function changes. It has also resulted in nephrotoxicity and, in one case, was a cardiac sensitizer and fatal cardiotoxin.</p> <p>Neural and cerebellar dystrophy were reported in several cases of habitual "glue sniffing." An epidemiological study in France on workers chronically exposed to toluene fumes reported leukopenia and neutropenia. Exposure levels were not given in the secondary reference; however, the average urinary excretion of hippuric acid, a metabolite of toluene, was given as 4 g/L compared to a normal level of 0.6 g/L</p> <p>Animals - The major target organs for the subchronic/chronic toxicity of toluene are the nervous system, liver, and kidney. Depressed immune response has been reported in male mice given doses of 105 mg/kg/day for 28 days. Toluene in corn oil administered to F344 male and female rats by gavage 5 days/week for 13 weeks, induced prostration, hypoactivity, ataxia, piloerection, lachrymation, excess salivation, and body tremors at doses 2500 mg/kg. Liver, kidney, and heart weights were also increased at this dose and histopathologic lesions were seen in the liver, kidneys, brain and urinary bladder. The no-observed-adverse effect level (NOAEL) for the study was 312 mg/kg (223 mg/kg/day) and the lowest-observed-adverse effect level (LOAEL) for the study was 625 mg/kg (446 mg/kg/day).</p> <p>Developmental/Reproductive Toxicity</p> <p>Exposures to high levels of toluene can result in adverse effects in the developing human foetus. Several studies have indicated that high levels of toluene can also adversely effect the developing offspring in laboratory animals.</p> <p>Humans - Variable growth, microcephaly, CNS dysfunction, attentional deficits, minor craniofacial and limb abnormalities, and developmental delay were seen in three children exposed to toluene in utero as a result of maternal solvent abuse before and during pregnancy</p> <p>Animals - Sternebral alterations, extra ribs, and missing tails were reported following treatment of rats with 1500 mg/m3 toluene 24 hours/day during days 9-14 of gestation. Two of the dams died during the exposure. Another group of rats received 1000 mg/m3 8 hours/day during days 1-21 of gestation. No maternal deaths or toxicity occurred, however, minor skeletal retardation was present in the exposed fetuses. CFLP Mice were exposed to 500 or 1500 mg/m3 toluene continuously during days 6-13 of pregnancy. All dams died at the high dose during the first 24 hours of exposure, however none died at 500 mg/m3. Decreased foetal weight was reported, but there were no differences in the incidences of skeletal malformations or anomalies between the treated and control offspring.</p> <p>Absorption - Studies in humans and animals have demonstrated that toluene is readily absorbed via the lungs and the gastrointestinal tract. Absorption through the skin is estimated at about 1% of that absorbed by the lungs when exposed to toluene vapor.</p> <p>Dermal absorption is expected to be higher upon exposure to the liquid; however, exposure is limited by the rapid evaporation of toluene.</p> <p>Distribution - In studies with mice exposed to radiolabeled toluene by inhalation, high levels of radioactivity were present in body fat, bone marrow, spinal nerves, spinal cord, and brain white matter. Lower levels of radioactivity were present in blood, kidney, and liver. Accumulation of toluene has generally been found in adipose tissue, other tissues with high fat content, and in highly vascularised tissues.</p> <p>Metabolism - The metabolites of inhaled or ingested toluene include benzyl alcohol resulting from the hydroxylation of the methyl group. Further oxidation results in the formation of benzaldehyde and benzoic acid. The latter is conjugated with glycine to yield hippuric acid or reacted with glucuronic acid to form benzoyl glucuronide. o-cresol and p-cresol formed by ring hydroxylation are considered minor metabolites</p> <p>Excretion - Toluene is primarily (60-70%) excreted through the urine as hippuric acid. The excretion of benzoyl glucuronide accounts for 10-20%, and excretion of unchanged toluene through the lungs also accounts for 10-20%. Excretion of hippuric acid is usually complete within 24 hours after exposure.</p>			
PROPANE	No significant acute toxicological data identified in literature search.			
WAUGH CARTON SPRAY OUT BROWN AEROSOL & METHYL ETHYL KETONE	Methyl ethyl ketone is considered to have a low order of toxicity; however methyl ethyl ketone is often used in combination with other solvents and the toxic effects of the mix may be greater than either solvent alone. Combinations of n-hexane with methyl ethyl ketone and also methyl n-butyl ketone with methyl ethyl ketone show increase in peripheral neuropathy, a progressive disorder of nerves of extremities. Combinations with chloroform also show increase in toxicity			
METHYL ETHYL KETONE & TOLUENE	The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.			
Acute Toxicity	✗	Carcinogenicity	✗	
Skin Irritation/Corrosion	✗	Reproductivity	✓	
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✗	
Respiratory or Skin sensitisation	✗	STOT - Repeated Exposure	✓	
Mutagenicity	✗	Aspiration Hazard	✗	

Legend: ✗ – Data either not available or does not fill the criteria for classification
 ✓ – Data available to make classification

SECTION 12 Ecological information

Toxicity

WAUGH CARTON SPRAY OUT BROWN AEROSOL	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available

Continued...

WAUGH CARTON SPRAY OUT BROWN AEROSOL

	Endpoint	Test Duration (hr)	Species	Value	Source
methyl ethyl ketone	NOEC(ECx)	48h	Crustacea	68mg/l	2
	EC50	72h	Algae or other aquatic plants	1972mg/l	2
	LC50	96h	Fish	>324mg/L	4
	EC50	48h	Crustacea	308mg/l	2
	EC50	96h	Algae or other aquatic plants	>500mg/l	4
n-hexane	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50(ECx)	240h	Algae or other aquatic plants	25.023-137.802mg/L	4
toluene	Endpoint	Test Duration (hr)	Species	Value	Source
	LC50	96h	Fish	5-35mg/l	4
	EC50	48h	Crustacea	3.78mg/L	5
	NOEC(ECx)	168h	Crustacea	0.74mg/L	5
butane	Endpoint	Test Duration (hr)	Species	Value	Source
	LC50	96h	Fish	24.11mg/l	2
	EC50(ECx)	96h	Algae or other aquatic plants	7.71mg/l	2
propane	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50(ECx)	96h	Algae or other aquatic plants	7.71mg/l	2
	LC50	96h	Fish	24.11mg/l	2
	EC50	96h	Algae or other aquatic plants	7.71mg/l	2
	Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data				

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the oxygen transfer between the air and the water

Oils of any kind can cause:

- ▶ drowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility
- ▶ lethal effects on fish by coating gill surfaces, preventing respiration
- ▶ asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and
- ▶ adverse aesthetic effects of fouled shoreline and beaches

In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation.

For aromatic hydrocarbons:

Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. For example, there is an increase in toxicity as alkylation of the naphthalene structure increases. The order of most toxic to least in a study using grass shrimp (*Palaemonetes pugio*) and brown shrimp (*Penaeus aztecus*) was dimethylnaphthalenes > methylnaphthalenes >naphthalenes.

Studies conclude that the toxicity of an oil appears to be a function of its di-aromatic and tri-aromatic hydrocarbons, which includes three-ring hydrocarbons such as phenanthrene. The heavier (4-, 5-, and 6-ring) PAHs are more persistent than the lighter (2- and 3-ring) PAHs and tend to have greater carcinogenic and other chronic impact potential. PAHs in general are more frequently associated with chronic risks. These risks include cancer and often are the result of exposures to complex mixtures of chronic-risk aromatics (such as PAHs, alkyl PAHs, benzenes, and alkyl benzenes), rather than exposures to low levels of a single compound.

Anthracene is a phototoxic PAH . UV light greatly increases the toxicity of anthracene to bluegill sunfish. . Benchmarks developed in the absence of UV light may be under-protective, and biological resources in strong sunlight are at more risk than those that are not.

Volatile furandiones and aldehydes are significant atmospheric oxidation products of aromatic compounds. Highly acidic dicarboxylic acids produced by the reactions between furandiones and water were shown to rapidly acidify an aqueous phase

For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants . The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials.

Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons . Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

- (1) n-alkanes, especially in the C10-C25 range, which are degraded readily;
- (2) isoalkanes;
- (3) alkenes;
- (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);

Continued...

WAUGH CARTON SPRAY OUT BROWN AEROSOL

- (5) monoaromatics;
- (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and
- (7) higher molecular weight cycloalkanes (which may degrade very slowly).

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil

bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances.

Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with $\log K_{ow} > -4.5$.

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13-C15 isoalkanes, C12 alkenes, C12-C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12-C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however, one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish

Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and *Daphnia magna*, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. *Daphnia magna* had a 24-hour LC50 of 1.8 mg/L. The values varied greatly for aquatic species such as rainbow trout and *Daphnia magna*, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. *Daphnia magna* had a 24-hour LC50 of 1.8 mg/L

The tropical mysid *Metamysidopsis insularis* was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L. This species has been shown to be as sensitive as temperate mysids to toxicants. However, this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (*Crangon crangon*) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L was determined. The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom *Phaeodactylum tricornutum* showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga *Isochrysis galbana* was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae *Chlorella salina* was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (*Eisenia fetida*) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

For methyl ethyl ketone:

log K_{ow} : 0.26-0.69

log K_{oc} : 0.69

K_{oc} : 34

Half-life (hr) air : 2.3

Half-life (hr) H₂O surface water : 72-288

Henry's atm m³ /mol: 1.05E-05

BOD 5 : 1.5-2.24, 46%

COD : 2.2-2.31, 100%

ThOD : 2.44

BCF : 1

Environmental fate:

TERRESTRIAL FATE: Measured K_{oc} values of 29 and 34 were obtained for methyl ethyl ketone in silt loams. Methyl ethyl ketone is expected to have very high mobility in soil.

Volatilisation of methyl ethyl ketone from dry soil surfaces is expected based upon an experimental vapor pressure of 91 mm Hg at 25 deg C. Volatilisation from moist soil surfaces is also expected given the measured Henry's Law constant of 4.7×10^{-5} atm-cu m/mole. The volatilisation half-life of methyl ethyl ketone from silt and sandy loams was measured as 4.9 days. Methyl ethyl ketone is expected to biodegrade under both aerobic and anaerobic conditions as indicated by numerous screening tests.

AQUATIC FATE: Based on K_{oc} values, methyl ethyl ketone is not expected to adsorb to suspended solids and sediment in water. Methyl ethyl ketone is expected to volatilise from water surfaces based on the measured Henry's Law constant. Estimated half-lives for a model river and model lake are 19 and 197, hours respectively. Biodegradation of this compound is expected based upon numerous screening tests. An estimated BCF value of 1 based on an experimental log K_{ow} of 0.29, suggests that bioconcentration in aquatic organisms is low.

ATMOSPHERIC FATE: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, methyl ethyl ketone, which has an experimental vapor pressure of 91 mm Hg at 25 deg C, will exist solely as a vapor in the ambient atmosphere. Vapour-phase methyl ethyl ketone is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 14 days. Methyl ethyl ketone is also expected to undergo photodecomposition in the atmosphere by natural sunlight. Photochemical degradation of methyl ethyl ketone by natural sunlight is expected to occur at approximately 1/5 the rate of degradation by photochemically produced hydroxyl radicals.

Ecotoxicity:

Fish LC50 (24 h): bluegill sunfish (*Lepomis macrochirus*) 1690-5640 mg/l; guppy (*Lebistes reticulatus*) 5700 mg/l; goldfish (*Carassius auratus*) >5000 mg/l

Fish LC50 (96 h): fathead minnow (*Pimephales promelas*) 3200 mg/l; bluegill sunfish (*Lepomis macrochirus*) 4467 mg/l; mosquito fish (*Gambusia affinis*) 5600 mg/l

Daphnia magna LC50 (48 h): <520-1382 mg/l

Daphnia magna LC50 (24 h): 8890 mg/l

Brine shrimp (*Artemia salina*) LC50 (24 h): 1950 mg/l

For n-hexane:

log K_{ow}: 3.17-3.94

BOD 5 if unstated: 2.21

COD: 0.04

ThOD: 3.52

Environmental fate:

Transport and Partitioning: The physical properties of n-hexane that affect its transport and partitioning in the environment are: water solubility of 9.5 mg/L; log[K_{ow}] (octanol/water partition coefficient), estimated as 3.29; Henry's law constant, 1.69 atm-m³ mol; vapor pressure, 150 mm Hg at 25 C; and log[K_{oc}] in the range of 2.90 to 3.61. As with many alkanes,

Continued...

WAUGH CARTON SPRAY OUT BROWN AEROSOL

experimental methods for the estimation of the Koc parameter are lacking, so that estimates must be made based on theoretical considerations.

The dominant transport process from water is volatilization. Based on mathematical models the half-life for *n*-hexane in bodies of water with any degree of turbulent mixing (e.g., rivers) would be less than 3 hours. For standing bodies of water (e.g. small ponds), a half-life no longer than one week (6.8 days) is estimated. Based on the log octanol/water partition coefficient (i.e. log[Koc]) and the estimated log sorption coefficient (i.e. log[Koc]) *n*-hexane is not expected to become concentrated in biota. A calculated bioconcentration factor (BCF) of 453 for a fathead minnow further suggests a low potential for *n*-hexane to bioconcentrate or bioaccumulate in trophic food chains.

In soil, the dominant transport mechanism for *n*-hexane present near the surface probably is volatilisation (based on its Henry's law constant, water solubility, vapor pressure, and Koc). While its estimated Koc values suggest a moderate ability to sorb to soil particles, *n*-hexane has a density (0.6603 g/mL at 20 °C) well below that of water and a very low water solubility of 9.5 mg/L. *n*-Hexane would, therefore, be viewed as a light nonaqueous phase liquid (LNAPL), which would suggest a low potential for leaching into the lower soil depths since the *n*-hexane would tend to float on the top of the saturated zone of the water table. *n*-Hexane would generally stay near the soil surface and, if not appreciably sorbed into the soil matrix, would be expected eventually to volatilise to the atmosphere. Exceptions would involve locations with shallow groundwater tables where there were large spills of hexane products. In such cases, the *n*-hexane could spread out to contaminate a large volume of soil materials.

Air: *n*-Hexane does not absorb ultraviolet (UV) light at 290 nm and is thus not expected to undergo direct photolysis reactions. The dominant tropospheric removal mechanism for *n*-hexane is generally regarded to be decomposition by hydroxyl radicals. Calculations assuming typical hydroxyl radical concentrations suggest a half-life of approximately 2.9 days. While *n*-hexane can react with nitrogen oxides to produce ozone precursors under controlled laboratory conditions, the smog-producing potential of *n*-hexane is very low compared to that of other alkanes or chlorinated VOCs. Hydroxyl ion reactions in the upper troposphere, therefore, are probably the primary mechanisms for *n*-hexane degradation in the atmosphere. As with most alkanes, *n*-hexane is resistant to hydrolysis.

Water: Although few data are available dealing explicitly with the biodegradation of *n*-hexane in water, neither hydrolysis nor biodegradation in surface waters appears to be rapid compared with volatilization. In surface waters, as in the atmosphere, alkanes such as *n*-hexane would be resistant to hydrolysis. Biodegradation is probably the most significant degradation mechanism in groundwater. The ability of *Pseudomonas mendocina* bacteria to metabolise *n*-hexane in laboratory microcosms simulating groundwater conditions has been documented. Mixed bacterial cultures as well as pure cultures are documented as capable of metabolizing *n*-hexane under aerobic conditions. In general, linear alkanes (such as *n*-hexane) are viewed as the most readily biodegradable fractions in petroleum, particularly when oxygen is present in solution. Once introduced into groundwater, *n*-hexane may be fairly persistent since its degradation by chemical hydrolysis is slow and opportunities for biodegradation may be limited under anoxic conditions or where nutrients such as nitrogen or phosphorus are in limited supply.

Sediment and Soil: The most important biodegradation processes involve the conversion of the *n*-hexane to primary alcohols, aldehydes and, ultimately, into fatty acids. Similar processes are encountered with other light hydrocarbons such as heptane. In general, unless the *n*-hexane is buried at some depth within a soil or sediment, volatilisation is generally assumed to occur at a much more rapid rate than chemical or biochemical degradation processes. Once introduced into deeper sediments, *n*-hexane may be fairly persistent.

Ecotoxicity:

Fish LC50 (96 h): *Oncorhynchus mykiss* 4.14 mg/l; *Pimephales promelas* 2.5 mg/l (flow through); *Lepomis macrochirus* 4.12 mg/l

Daphnia EC50 (48 h): 3.87 mg/l

For ketones:

Ketones, unless they are alpha, beta-unsaturated ketones, can be considered as narcosis or baseline toxicity compounds

Hydrolysis may also involve the addition of water to ketones to yield ketals under mild acid conditions. However, this addition of water is thermodynamically favorable only for low molecular weight ketones. This addition is an equilibrium reaction that is reversible upon a change of water concentration and the reaction ultimately leads to no permanent change in the structure of the ketone substrate. The higher molecular weight ketones do not form stable ketals. Therefore, the ketones are stable to water under ambient environmental conditions. Another possible reaction of ketones in water involves the enolic hydrogen on the carbons bonded to the carbonyl function. Under conditions of high pH (pH greater than 10), the enolic proton is abstracted by base (OH-) forming a carbanion intermediate that may react with other organic substrates (e.g., ketones, esters, aldehydes) containing a center for nucleophilic attack. The reactions, commonly recognized as condensation reactions, produce higher molecular weight products. Under ambient conditions of temperature, pH, and low concentration, these condensation reactions are unfavorable.

Based on its reactions in air, it seems likely that ketones undergo photolysis in water. It is probable that ketones will be biodegraded to an appreciable degree by micro-organisms in soil and water. They are unlikely to bioconcentrate or biomagnify.

For butane:

log Kow: 2.89

Koc: 450-900

BCF: 1.9

Environmental Fate

Terrestrial Fate: An estimated Koc value of 900, determined from a log Kow of 2.89 indicates that *n*-butane is expected to have low mobility in soil. Volatilisation of *n*-butane from moist soil surfaces is expected to be an important fate process given an estimated Henry's Law constant of 0.95 atm-cu m/mole, derived from its vapor pressure, 1820 mm Hg and water solubility, 61.2 mg/l. The potential for volatilisation of *n*-butane from dry soil surfaces may exist based upon its vapor pressure. While volatilisation from soil surfaces is expected to be the predominant fate process of *n*-butane released to soil, this compound is also susceptible to biodegradation. In one soil, a biodegradation rate of 1.8 mgC/day/kg dry soil was reported.

Aquatic fate: The estimated Koc value indicates that *n*-butane may adsorb to suspended solids and sediment. Volatilisation from water surfaces is expected based upon an estimated Henry's Law constant. Using this Henry's Law constant volatilisation half-lives for a model river and model lake are estimated to be 2.2 hours and 3 days, respectively. An estimated BCF of 33 derived from the log Kow suggests the potential for bioconcentration in aquatic organisms is moderate. While volatilisation from water surfaces is expected to be the major fate process for *n*-butane released to water, biodegradation of this compound is also expected to occur. In a screening study, complete biodegradation was reported in 34 days. In a second study using a defined microbial culture, it was reported that *n*-butane was degraded to 2-butanol and 2-butanol. Photolysis or hydrolysis of *n*-butane in aquatic systems is not expected to be important.

Atmospheric fate: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and the vapour pressure, *n*-butane, is expected to exist solely as a gas in the ambient atmosphere. Gas-phase *n*-butane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 6.3 days, calculated from its rate constant of 2.54×10^{-12} cu cm/molecule-sec at 25 deg. Based on data for iso-octane and *n*-hexane, *n*-butane is not expected to absorb UV light in the environmentally significant range, >290 nm and probably will not undergo direct photolysis in the atmosphere. Experimental data showed that 7.7% of the *n*-butane fraction in a dark chamber reacted with nitrogen oxide to form the corresponding alkyl nitrate, suggesting nighttime reactions with radical species and nitrogen oxides may contribute to the atmospheric transformation of *n*-butane.

For propane:

Environmental Fate

Terrestrial fate: An estimated Koc value of 460 determined from a log Kow of 2.36 indicates that propane is expected to have moderate mobility in soil. Volatilisation of propane from moist soil surfaces is expected to be an important fate process given an estimated Henry's Law constant of 7.07×10^{-1} atm-cu m/mole, derived from its vapor pressure, 7150 mm Hg, and water solubility, 62.4 mg/l. Propane is expected to volatilise from dry soil surfaces based upon its vapor pressure. Using cell suspensions of microorganisms isolated from soil and water, propane was oxidised to acetone within 24 hours, suggesting that biodegradation may be an important fate process in soil and sediment.

Aquatic fate: The estimated Koc value indicates that propane is expected to adsorb to suspended solids and sediment. Volatilisation from water surfaces is expected based upon an estimated Henry's Law constant. Using this Henry's Law constant volatilisation half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. An estimated BCF of 13.1 using log Kow suggests the potential for bioconcentration in aquatic organisms is low. After 192 hr, the trace concentration of propane contained in gasoline remained unchanged for both a sterile control and a mixed culture sample collected from ground water contaminated with gasoline. This indicates that biodegradation may not be an important fate process in water.

Atmospheric fate: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and vapour pressure, propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days, calculated from its rate constant of 1.15×10^{-12} cu cm/molecule-sec at 25 deg C. Propane does not contain chromophores that absorb at wavelengths >290 nm and therefore is not expected to be susceptible to direct photolysis by sunlight.

For toluene:

log Kow : 2.1-3

log Koc : 1.12-2.85

Koc : 37-260

log Kom : 1.39-2.89

Half-life (hr) air : 2.4-104

Half-life (hr) H2O surface water : 5.55-528

Half-life (hr) H2O ground : 168-2628

Half-life (hr) soil : <48-240

Henry's Pa m3 /mol: 518-694

Henry's atm m3 /mol: 5.94E-03

BOD 5 0.86-2.12, 5%

Continued...

WAUGH CARTON SPRAY OUT BROWN AEROSOL

COD : 0.7-2.52,21-27%

ThOD : 3.13

BCF : 1.67-380

log BCF : 0.22-3.28

Environmental fate:

Transport: The majority of toluene evaporates to the atmosphere from the water and soil. It is moderately retarded by adsorption to soils rich in organic material (Koc = 259), therefore, transport to ground water is dependent on the soil composition. In unsaturated topsoil containing organic material, it has been estimated that 97% of the toluene is adsorbed to the soil and only about 2% is in the soil-water phase and transported with flowing groundwater. There is little retardation in sandy soils and 2-13% of the toluene was estimated to migrate with flowing water; the remainder was volatilised, biodegraded, or unaccounted for. In saturated deep soils with no soil-air phase, about 48% may be transported with flowing groundwater.

Transformation/Persistence:

Air - The main degradation pathway for toluene in the atmosphere is reaction with photochemically produced hydroxyl radicals. The estimated atmospheric half life for toluene is about 13 hours. Toluene is also oxidised by reactions with atmospheric nitrogen dioxide, oxygen, and ozone, but these are minor degradation pathways. Photolysis is not considered a significant degradative pathway for toluene

Soil - In surface soil, volatilisation to air is an important fate process for toluene. Biodegradation of toluene has been demonstrated in the laboratory to occur with a half life of about 1 hour. In the environment, biodegradation of toluene to carbon dioxide occurs with a typical half life of 1-7 days.

Water - An important fate process for toluene is volatilization, the rate of which depends on the amount of turbulence in the surface water. The volatilisation of toluene from static water has a half life of 1-16 days, whereas from turbulent water the half life is 5-6 hours. Degradation of toluene in surface water occurs primarily by biodegradation with a half life of less than one day under favorable conditions (presence of microorganisms, microbial adaptation, and optimum temperature). Biodegradation also occurs in shallow groundwater and in salt water at a reduced rate). No data are available on anaerobic degradation of toluene in deep ground water conditions where aerobic degradation would be minimal.

Biota - Bioaccumulation in most organisms is limited by the metabolism of toluene into more polar compounds that have greater water solubility and a lower affinity for lipids. Bioaccumulation in the food chain is predicted to be low.

Ecotoxicity:

Toluene has moderate acute toxicity to aquatic organisms; several toxicity values are in the range of greater than 1 mg/L and 100 mg/L.

Fish LC50 (96 h): fathead minnow (*Pimephales promelas*) 12.6-72 mg/l; *Lepomis macrochirus* 13-24 mg/l;

guppy (*Poecilia reticulata*) 28.2-59.3 mg/l; channel catfish (*Ictalurus punctatus*) 240 mg/l; goldfish (*Carassius auratus*): 22.8-57.68 mg/l

Crustaceans LC50 (96 h): grass shrimp (*Palaeomonetes pugio*) 9.5 ppm, crab larvae stage (*Cancer magister*) 28 ppm; shrimp (*Crangon franciscorum*) 4.3 ppm; daggerblade grass shrimp (*Palaeomonetes pugio*) 9.5 mg/l

Algae EC50 (24 h): green algae (*Chlorella vulgaris*) 245 mg/l (growth); (72 h) green algae (*Selenastrum capricornutum*) 12.5 mg/l (growth)

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
methyl ethyl ketone	LOW (Half-life = 14 days)	LOW (Half-life = 26.75 days)
n-hexane	LOW	LOW
toluene	LOW (Half-life = 28 days)	LOW (Half-life = 4.33 days)
butane	LOW	LOW
propane	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
methyl ethyl ketone	LOW (LogKOW = 0.29)
n-hexane	MEDIUM (LogKOW = 3.9)
toluene	LOW (BCF = 90)
butane	LOW (LogKOW = 2.89)
propane	LOW (LogKOW = 2.36)

Mobility in soil

Ingredient	Mobility
methyl ethyl ketone	MEDIUM (KOC = 3.827)
n-hexane	LOW (KOC = 149)
toluene	LOW (KOC = 268)
butane	LOW (KOC = 43.79)
propane	LOW (KOC = 23.74)

SECTION 13 Disposal considerations**Waste treatment methods**

Product / Packaging disposal	<ul style="list-style-type: none"> Recycle wherever possible or consult manufacturer for recycling options. Consult State Land Waste Management Authority for disposal. <p>► DO NOT allow wash water from cleaning or process equipment to enter drains.</p>
	<ul style="list-style-type: none"> ► It may be necessary to collect all wash water for treatment before disposal. ► In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. ► Where in doubt contact the responsible authority. ► Consult State Land Waste Management Authority for disposal. ► Discharge contents of damaged aerosol cans at an approved site. ► Allow small quantities to evaporate. ► DO NOT incinerate or puncture aerosol cans. ► Bury residues and emptied aerosol cans at an approved site.

Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017

Disposal Requirements

Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the

Continued...

WAUGH CARTON SPRAY OUT BROWN AEROSOL

package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled.

The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. DO NOT deposit the hazardous substance into or onto a landfill or a sewage facility.

Burning the hazardous substance must happen under controlled conditions with no person or place exposed to

(1) a blast overpressure of more than 9 kPa; or

(2) an unsafe level of heat radiation.

The disposed hazardous substance must not come into contact with class 1 or 5 substances.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (UN)

UN number	1950	
UN proper shipping name	AEROSOLS	
Transport hazard class(es)	Class	2.1
	Subrisk	Not Applicable
Packing group	Not Applicable	
Environmental hazard	Not Applicable	
Special precautions for user	Special provisions	63; 190; 277; 327; 344; 381
	Limited quantity	1000ml

Air transport (ICAO-IATA / DGR)

UN number	1950	
UN proper shipping name	Aerosols, flammable	
Transport hazard class(es)	ICAO/IATA Class	2.1
	ICAO / IATA Subrisk	Not Applicable
	ERG Code	10L
Packing group	Not Applicable	
Environmental hazard	Not Applicable	
Special precautions for user	Special provisions	A145 A167 A802
	Cargo Only Packing Instructions	203
	Cargo Only Maximum Qty / Pack	150 kg
	Passenger and Cargo Packing Instructions	203
	Passenger and Cargo Maximum Qty / Pack	75 kg
	Passenger and Cargo Limited Quantity Packing Instructions	Y203
	Passenger and Cargo Limited Maximum Qty / Pack	30 kg G

Sea transport (IMDG-Code / GGVSee)

UN number	1950	
UN proper shipping name	AEROSOLS	
Transport hazard class(es)	IMDG Class	2.1
	IMDG Subrisk	Not Applicable
Packing group	Not Applicable	
Environmental hazard	Not Applicable	
Special precautions for user	EMS Number	F-D , S-U
	Special provisions	63 190 277 327 344 381 959
	Limited Quantities	1000 ml

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Continued...

WAUGH CARTON SPRAY OUT BROWN AEROSOL

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
methyl ethyl ketone	Not Available
n-hexane	Not Available
toluene	Not Available
butane	Not Available
propane	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
methyl ethyl ketone	Not Available
n-hexane	Not Available
toluene	Not Available
butane	Not Available
propane	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

This substance is to be managed using the conditions specified in an applicable Group Standard

HSR Number	Group Standard
HSR002515	Aerosols Flammable Group Standard 2020

Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit.

methyl ethyl ketone is found on the following regulatory lists

New Zealand Approved Hazardous Substances with controls

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Workplace Exposure Standards (WES)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

n-hexane is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Approved Hazardous Substances with controls

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Workplace Exposure Standards (WES)

toluene is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Approved Hazardous Substances with controls

New Zealand Workplace Exposure Standards (WES)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

butane is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Approved Hazardous Substances with controls

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Workplace Exposure Standards (WES)

propane is found on the following regulatory lists

New Zealand Approved Hazardous Substances with controls

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Workplace Exposure Standards (WES)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

Hazardous Substance Location

Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Quantity (Closed Containers)	Quantity (Open Containers)
2.1.2A	3 000 L (aggregate water capacity)	3 000 L (aggregate water capacity)

Certified Handler

Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Class of substance	Quantities
Not Applicable	Not Applicable

Refer Group Standards for further information

Continued...

WAUGH CARTON SPRAY OUT BROWN AEROSOL

Maximum quantities of certain hazardous substances permitted on passenger service vehicles

Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Gas (aggregate water capacity in mL)	Liquid (L)	Solid (kg)	Maximum quantity per package for each classification
2.1.2A				1L (aggregate water capacity)

Tracking Requirements

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (methyl ethyl ketone; n-hexane; toluene; butane; propane)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECL	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	25/08/2021
Initial Date	20/08/2021

SDS Version Summary

Version	Date of Update	Sections Updated
1.3.7.9	25/08/2021	Classification, Environmental, Ingredients

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC – TWA: Permissible Concentration-Time Weighted Average PC –

STEL: Permissible Concentration-Short Term Exposure Limit IARC:

International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit.

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL: No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECL: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

Continued...

WAUGH CARTON SPRAY OUT BROWN AEROSOL

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch.